

Integration of Newly Arrived Migrants By Means Of Competency Assessment And High-Quality Further Vocational Training

Curricula Energy efficiency and renewable energies

Satakunta University of Applied Sciences (SAMK), project partner number 7 Compiled by Dr Kari Lilja and Dr Sirpa Sandelin

Co-funded by the Erasmus+ Programme of the European Union

Table of Contents

Introduction	3
Target group	3
Work required	3
Variation in regulations and circumstances	4
Modular structure	5
Contents of the curricula	6
Obligatory parts	6
Background, Concepts, EU-regulation and regional and local differences, 5 CU	6
Renewable Energy Sources 1, 5 CU	7
Energy Transfer 5 CU 1	0
Optional parts1	2
Renewable Energy Sources 2 4 CU 1	2
Special Questions in Renewable Energy Technology1	4
Management and entrepreneurship studies (Optional courses)1	5
Examinations and qualifications1	6

Introduction

Continuously increasing amount of greenhouse gases in atmosphere and increasing average temperature on the earth, the greenhouse effect, is believed to be a consequence of greenhouse gases. Worldwide climate change treaty and both European Union and national regulation with the aim to control the ongoing climate change and to limit the rise of temperature have directed the focus of the energy policy to renewable and alternative energy sources. The aim of the curricula presented below is to respond the requirements set by these new trends of the energy policy.

Target group

The target group of curricula consists of refugees and immigrants with various backgrounds, knowledge and experience, thus all potential students do not have the same start level. This means that in curricula two start points have been included (Figure 1), one for beginners, who should get elementary training including basics of electric, physics, chemistry, electronic, buildings and construction before the courses. Case by case also the potential lack of knowledge in mathematics should be tackled. If the local or national qualification rules contain admission requirements, it is responsibility of each local actor giving the training to make sure that

- a) each participant has the required education, skills and experience, and
- b) for those who do not have required education and experience, the elementary training described above will give the required skills.

The second start point is for those who already have the basic knowledge needed, who for example have technical or electric qualification, and who wants to specialize in renewable energy. Furthermore, considering the target group (refugees and immigrants), the curricula should give them knowledge and skills they could be capable to utilize in their own countries if they are returning. Thus, the curricula should give certain common skills and knowledge but also enable modification and personalization depending to the needs of both individuals themselves and the host country.

The qualification requirements and ways to reach qualifications and licenses to electric and energy work are quite different in the BSR-countries, thus the curricula can be written only as a form of framework inside which the local actors should be able to modify the contents of courses according to their own regulations and local requirements.

Work required

In the curricula the average work required by each course is measured in ECTS credit units (Abbreviated in this presentation as CU). One credit unit is 27 hours studying, and the total of obligatory theory courses and practice is 22 ECTS credit units corresponding 594 hours containing lectures, guided training in practice, individual studies and assignments. The practical training varies from 1 to 5 CU:s depending to the earlier proved experience of student. Furthermore, there is voluntary course packet "Management and entrepreneurship", 15-25 CU:s, that is targeted to those planning to found a business of their own. All the courses can be used as separate modules.

Figure 1: Content and order of Courses

Variation in regulations and circumstances

The regulation on both construction and electric branches is based on national-wide qualification systems limiting the rights of workers to do certain tasks, and national and even local requirements concerning e.g. isolation of houses, distances of wind mills from settled areas or location of geothermal heat well.

The national and local differences become more highlighted in the need of certain services like heating and cooling. In the southern part of Finland, cooling is needed approximately 2 months per year (Past year was an exception), whereas in Lapland there can be only few days when the cooling would be appreciable. With heating and thermal insulation, the situation is even more complicated. In south-western part of Finland, the temperature in winter varies mostly between -5 and +2 degrees, but there may be cold periods, when a temperature remains week or two under -20 degrees. Furthermore, it is always possible that the temperature sinks below -30 degrees and even close to -40. In eastern and northern parts of Finland the temperature varies during the winter mostly between -15 and -25 degrees but may sometimes go close to -40 degrees and stay there for weeks. Other parts of Finland are something between these. The new energy efficiency - and thermal insulation rules are measured according to average circumstances, which means that in one part of the country they can be oversized and in some other part of the country they might be hardly undersized.

This diversity in local circumstances will be multiplied if we compare northern Finnish village to southern German, Polish or Estonian city, and furthermore, in addition to temperature, rain and snow, other variations will be found from possibilities to use district heating, solar power and heat, wind power or geothermic heat. In the most northern village in Finland and in EU, Nuorgami, the sun is shining days and nights for 74 days, two and a half months, in summer and staying under the horizon 51 days in the winter, during the period, when the energy would be needed most. In the most southern part of Germany there is only few hours difference in sunny periods between winter and summer. The district heating is reasonable in villages and cities where the buildings are close to each other and close to power plant producing heat. In Finland there are regions where the distance between two farms or detached houses may be dozen kilometers.

Modular structure

Due to the regional differences, some of which were described above, the contents of courses concerning regulation and its adaptation to local circumstances must be responsibility of local institutes. In this curriculum just the frames are included. As the target group of this training is refugees and immigrants, the background, knowledge and experience of participants may vary a lot. The courses have been packed as modules (**Fehler! Verweisquelle konnte nicht gefunden werden.**), and each module contains certain independent topics (Figure 3: Obligatory and optional coursesFigure 3). Each topic, its subtopics, goals and examples of material will be described below in the chapter "Contents of curricula".

Figure 2: Modular structure

- Background, Concepts, EU and RET, Regional differences in Equalifications, circumstances and conditions, environmental and technical regulation (laws, required qualifications) 5 CU
 Renewable power sources 1, 5 CU: Solar energy (Heating and electricity), Wind power (Wind mills, wave mills), Hydroelectric power, Extra Low Voltage
- Systems (Wiring, energy losses, accumulators),
- Energy transfer: Electric, Heat, Cool, Eliminating the losses, collecting and reusing the loss energy 5 CU

Optional courses 7 CU min These course

These courses can be selected depending to the needs of student

- Renewable power sources 2, 4 CU: Renewable combustibles (2 CU), Geothermic heating and cooling (2 CU) can be selected separately
- Special questions in Renewable energy technology, 4 CU: Mixed energy sources, Micro-sized energy producers, Co-operation, Fissio vs Fuusio, Reusing the CO2; 1 CU per each.
- Improving the energy efficiency, 4 CU: Building construction; Isolating; Recovery of waste energy; Designing and planning;
- Measuring and evaluating the energy efficiency of the buildings, 2 CU: Legislation and regulations; Measuring; Calculations
- Business management (Not replacing the items above but in addition to these, if student wants), 15 20 CU

Figure 3: Obligatory and optional courses

Contents of the curricula

Obligatory parts

Background, Concepts, EU-regulation and regional and local differences, 5 CU

Motivation is one of the important factors behind the good results in learning. It is essential for students beginning their studies to know why these subjects must be studied, why these topics should be learned. In the first course this motivation is raised and supported by highlighting the emerging concept of sustainable development and clarifying the conceptual hierarchy between energy technology, renewable energy, energy efficiency and sustainable development (Figure 4). Student should also know, what is the sense of

Figure 4: Conceptual structure of energy efficiency and renewable energy

climate change or greenhouse effect, how they may affect on our daily life and how is the EU-level regulation to which the national regulation is based trying to tackle them. Furthermore, it is also important to realize that the national regulations and requirements for qualifications are not necessary similar in different BSR-countries, nor in line with EU-directives.

The issues that should be dealt with during the course *Background, Concepts, EU-regulation and regional and local differences* and their relational proportions are

ISSUES	Goals of learning	Links to the material (Examples)
• Concepts of (20 %)	Goal: Understanding the sense of terminology	
 Sustainable development 	Goal: Understanding the diversity and variety of concepts and goals within the term "Sustainable development"	<u>UN: Goals of</u> sustainable devel opment
 Renewable energy 		www.irena.org/
 Energy efficiency 		Energy efficiency
 Energy technology 		<u>Clean ET</u>
 Greenhouse effect 		What it is?
 Climate change 		NASA knows
 Main points of energy and renewable energy policies of EU (30 %) 	Goal: Understanding the background of new energy policy	Example: <u>Energy</u> policy
 EU Energy strategy including 	Goal: Understanding the sense and goals of common energy strategies	<u>Theme: Energy</u> ; <u>The future of</u> <u>energy</u>
 EU 2020 Climate and energy package 		<u>EU2020</u>
 EU 2030 – policy 		<u>EU2030</u>
 EU 2050 Low Carbon goal 	Cool: Understanding the	<u>EU2050</u>
 EU adaptation strategy 	differences of strategies (short /	Adaptation strategy
 EU adaptation to climate change 	וטווא נפוווו, נמואפנג מווע צטמוג)	Adaptation to ; Climate change

 EU research and development (R&D) concerning the energy technology 	Goal: Understanding how the policies are based to the results of scientific research	EU Energy Technology Research
European Energy research alliance		Coordinating Energy Research
 Local regulations and requirements of qualifications (50 %) 	Goal: Understanding the diversity of regulation	
 Each country deal with their regulations, that are not necessary applicable in other countries. 	Goal: Knowing the applicable regulation in students own area well enough to pass the local examination if the base education fulfills the requirements.	Links to local authorities. Example: Link to Finnish <u>TUKES</u>
 Local hierarchy of regulations 		According to local documentation
 Local hierarchy of qualifications and requirements 		According to local documentation

Renewable Energy Sources 1, 5 CU

The topic *"Renewable Energy Sources"* has been divided into two courses, each with the extent of 5 CU:s. In the first course the focus is on the carbon neutral renewable energy sources. Solar power, wind power and hydroelectric power are contemporary the most promising energy sources in this branch. The geothermal or volcanic heat and electric produced by geothermal condensing power plants will be discussed in Renewable Energy Sources 2 -course. The issues that should be dealt with during the course *Renewable Energy Sources 1* and their relational proportions are

ISSUES	Goals of learning	Links to the
		material
		(Examples)
• Solar power (25 %)	To understand how the solar	EnergySage Solar
	power works	(commercial community)
o Heat	To understand the operational	Solar heat collector
	basics of heating panels and	
	other systems collecting and	
	utilizing the solar heat.	
o Electric	To understand the operational	How do they work
	basics of electric panels and	
	other systems producing electric	
	by utilizing the solar.	
 Dual production 	To know the benefits and	Solar thermal plants
	challenges of dual production	
	(Both heat and electric)	
 Scalable systems 	To know how to enable and	
	utilize the scalability of solar	
	power systems	
 Planning 	To know fundamentals of	
	planning effective and economic	
	solar power systems	
 Installing 	To be able to install and	
	implement the solar power	
	system either as single heating	
	or electric system or as a part of	

	electric power network or	
	heating network	
 Environmental aspects 	To know the environmental	
	aspects of solar power system	
	during the whole life cycle of the	
	system from manufacturing to	
	recycling	
Wind power (25 %)	To know fundamentals of wind	<u>Tutorials</u>
	power	Examples: Wind
		power in Finland
		and in <u>Europe</u>
 Wind mills 	To understand how the	How they work
	windmills work, what are their	
	benefits and challenges and	
	what the utilizing of windmills	
	requires.	
 Different 	To know and identify different	
technologies	type of windmills and their	
	functionalities	
 Offshore 	To know benefits and challenges	
	of windfarms offshore	
 Ashore 	To know benefits and challenges	
	of windfarms ashore	
 Windfarms 	To know the issues that should	Impacts on
	be taken into account when	environment
	planning and building the	
	windfarms	
 Scalability of 	To know the benefits, challenges	
systems	and requirements of scalable	
	wind power systems	
 Planning 	To know fundamentals of	
	planning effective and economic	
	wind power systems	
 Installing 	To be able to install and	
	implement the wind power	
	system either as single electric	
	system or as a part of electric	
	power network	
 Environmental 	To know the environmental	
aspects	aspects of wind power system	
	during the whole life cycle of the	
	system from manufacturing to	
M/		Characterit
o wave mills	To understand basic	<u>Slowmili</u> Baltia ana a
	the herefits and shellonges of	Baltic area
	using the wave newer	
Different	To know the different	
- Different	technologies available when	
technologies	developing the wave mills	
Contemporary	To know the contemporary	
situation in	situation of development the	
development	challenges met and victories	
	gained	
Environmental	To know the environmental	
aspects	aspects of wave power system	
	during the whole life cycle of the	

	system from manufacturing to	
	recycling	
Accumulating and storing	To understand the functional	Storing the energy
technologies (20 %)	properties and differences of	
	different energy storing systems	
 Batteries 	To know different types of	Battery
	batteries, their properties and	technologies for
	suitability to different usages.	vehicles
	To know the functionality of	
accumulating (numn	hydrostatic accumulating its	
nower plants)	henefits and challenges	
 Kinetic accumulating 	To know the functionality of	
	kinetic accumulating (Storing the	
	energy as kinetic form e.g. in	
	flywhool) its honofits and	
	challenges	
O Other storing	To know and name other storing	
technologies	technologies to be un to date in	
teennologies	technologic development	
Efficiency and lasses	To know fasters impacting the	
o Efficacy and losses	officacy and losses of different	
	enicacy and losses of different	
	accumulating technologies, now	
	the best benefits	
	To know the environmental	
 Environmental aspects 	To know the environmental	
	aspects of different	
	accumulating technologies	
	during the whole life cycle of the	
	system from manufacturing to	
	recycling	D 100
Hydroelectric power (5 %)	To understand the functional	Different types of
	properties and differences of	<u>plants</u>
	different hydroelectric power	
	systems	
 Different technologies 	To identify different	
and solutions	technologies and solutions and	
	to know their benefits and	
	challenges	
 Scalability (from banks 	To know the possibilities of	
of creeks to huge	scalable power systems	
pondage power		
stations)		
 Usability 	To understand the aspects	
	impacting the usability of	
	hydroelectric power	
 Environmental aspects 	To know the environmental	
	aspects of different	
	hydroelectric power	
	technologies during the whole	
	life cycle of the system from	
	manufacturing to recycling	
 Extra low voltage systems (ELVS; 	To understand the connections	ELV-systems
Voltage < 50 V) (40 %) 25 %	between variables Power (P),	E.g. <u>Wiring</u>
	Voltage (U), Current (I) and	(Commercial)
	Resistance (R): P=UI and U = RI,	Serie or Parallel
	and impacts of these on	In huildings
	designing the systems and wires	

0	Differences compared to systems with higher voltage	To understand the difference between higher voltage systems and extra low voltage systems as well as between AC (Alternating current) and DC (Direct current)	
0	Planning ELVS	To know requirements to be	
		taken into account when	
		planning the systems	
0	Installing and implementing	To know requirements and	Installing
	ELVS	properties to be taken into	
		account when installing and	
		implementing the systems	
0	Minimizing losses	To understand how to minimize	
		losses in extra low voltage	
		systems	

Energy Transfer 5 CU

Both in centralized and distributed energy production transferring the energy is one of the major sources of loss, particularly when transferring the electric, heat or cool. This course covers the different transferring technologies and possibilities to minimize the loss. Although it might be unbelievable at first sight, in different forms of energy the variables impacting the loss are quite similar – with one exception that confirms the rule. The most impacting variables are the distance between energy source and user, diameter or cross-sectional area of wire or pipe and the material the pipe or the wire is made of. The exception is transfer of combustibles either in pipe or over the sea, on the road or on the rails in the containers. In these cases there are many other variables too. The issues that should be dealt with during the course and their relational proportions are

	ISSUES	Goals of learning	Links to the material (Examples)
•	Transfer of heat and cool (30 %)	To understand the challenges of transferring heat and cool	<u>Concepts</u> <u>Distance cooling</u> <u>Distance heating</u>
	 Transferring strategies and techniques Pipe, container, [radiation] Usage and usability 	To understand factors impacting the choice of technique	Designing (Commercial)
	 Variables impacting the loss Cross-sectional area of pipe Distance = length of the pipe Volume of the container Material of pipe or container and used insulate materials Properties of heat carrier, e.g. density, viscosity and specific heat capacity Efficacy of pumps (speed of the heat carrier) surrounding temperature Efficacy of heat exchanger in both ends of the pipe 	To know the variables affecting the efficiency of transfer	
	 Environmental aspects 	To know the environmental aspects of heat and cool	

	transfer during the whole life	
	cycle of the system from	
	manufacturing to recycling	
 Maintenance backlog (in 	To understand the meaning and	Definition
conceptual level)	impacts of maintenance backlog	
• Transfer of electric (30 %)	To understand the challenges of	
	transferring electric	
 Transferring strategies and 	To understand factors impacting	
techniques	the choice of technique	Wireless transfer
Wire batteries [radiation]		Whereas transfer
 Usage and usability 		
- Variables impacting the lass	To know the variables offecting	
• Variables impacting the loss	the efficiency of the sefer	
	the efficiency of transfer	
 Cross-sectional area of 		
wire		
Distance = length of the		
wire		
 Capacity of the battery 		
 Material of wire = specific 		
resistance		
 Properties of current: 		
Voltage, direct or		
alternating current,		
frequency		
 Properties of transformers 		
 Properties of load, e.g. idle 		
power, stability of load,		
load peaks		
 Superconductive materials 		
and techniques		
• Transfer of combustibles (20 %)	To understand the challenges of	
	transferring compustibles	
 Transferring strategies and 	To understand factors impacting	
techniques	the choice of technique	
 Pipes 		
 Containers in cars, trains 		
and ships		
 Causes of losses 	To understand the main causes	
 Accidents, technical faults 	of losses, to know how to avoid	
and human incidents	losses	
 Energy used by pumps and 		
vehicles		
O Environmental aspects	To know the environmental	
	aspects and risks of combustible	
	transfer during the whole life	
	cycle of the system from	
	manufacturing to recycling	
	manufacturing to recycling	1

•	Minimizing, collecting and	To understand the benefits of	<u>Designs</u>
	reusing the loss energy (15 %)	how to minimize the energy loss	
0	Insulation	To understand how the	Heat losses
		constructions can affect energy	Thermal insulation
		IOSS.	
0	Minimizing the friction	To understand how the design	Friction in pumps
		of systems can impact on energy	
0	Minimizing the air / water /	To understand what the	
	electric resistance	resistance is and how to impact	
		on it.	
0	Recovery of heat (see	To know how to recovery (loss)	
	above)	heat	
0	Recovery of kinetic energy	To know how to recovery kinetic	
	e.g. in electric cars	energy	
0	Technologic challenges in	To know the technologic	
	minimizing and reusing the	challenges that are slowing	
	loss energy	down the development	
0	Loss caused in energy	To understand the importance	
	transfer – see the next	of energy transfer in minimizing	
	course: Energy transfer	the losses.	
0	Environmental aspects	To know the environmental	
		aspects of minimizing energy	
		losses during the whole life cycle	
		of the system from	
		manufacturing to recycling	
0	Commercial aspects		
•	Storing the heat / cool (5 %)	To understand the possibilities,	New ways
		challenges and benefits of	Molten sand
		storing the heat. To know the	
		methods used and methods	
		under the development.	

Optional parts

(At least 7 CU must be chosen)

Renewable Energy Sources 2 4 CU

The second part of Renewable Energy Sources -course concentrates in sources the renewability or carbon neutrality of which can be questioned. E.g. producing and using ethanol causes in most cases carbon dioxide whereas cultivating the plants from which ethanol is made of binds carbon dioxide via photosynthesis. What is the final result concerning the carbon neutrality depends on many variables. However, the research, production and use of these so called renewable combustibles has increased during the latest decades due to the fact that they can be used in many contemporary motors with minor modifications.

Geothermal heating and cooling, including geothermal condensing power plants used in some volcanic regions is in common considered to be riskless, carbon neutral and not affecting to the green house effect but – depending to the area where geothermal heat is used – the situation is not necessary so simple. In Finland, for example, the soil contains radioactive radon, which is released to the atmosphere when a heath well is drilled. In Siberia and Northern Canada, drilling the soil may release huge amounts of methane that is considered to be one of the greenhouse gases, to the atmosphere, and drilled wells in volcanic soil may cause carbon monoxide and carbon dioxide emissions. On the other hand, some of the systems, e.g. geothermal heat pumps, are easily included into contemporary central heating systems.

Minimizing, collecting and reusing the loss energy is – on point of view of sustainable development - an essential part of both traditional energy technology and renewable energy technology. Among the known

examples of minimizing the loss are the thermal insulation regulations of buildings and regulations concerning the idling of motor vehicles. In many cases – like examples above – minimizing the energy loss also supports the reducing of pollutant emissions. The two topics, *renewable combustibles* and *geothermal energy*, which are available to be included to the course *Renewable Energy Sources 2* are 2 CU courses each.

ISSUES	Goals of learning	Links to the
		material
		(Examples)
Renewable combustibles (2 CU)	To understand the challenges	Products (commercial)
	and possibilities of production	Global aspect
	and usage of renewable	Renewable energy
	combustibles	
 e.g. ethanol, methanol, 	To know the most common	Examples
biodiesel, biogas, carbo	renewable fuels and different	<u>Articles</u>
monoxide, fuel wood	ways to produce them	
 Usage and usability 	To be aware of the challenges	Use of cleaner fuels
	and issues concerning to the	
	usage of renewable	
	combustibles	
 Changes and 	To understand the requirements	Motors
modifications required to	renewable fuels set to the	
motors and heating	motors and heating systems	
systems		
• Production	To understand the production of	Materials (commercial)
	different renewable	<u>Technology</u>
	combustibles	
 Environmental aspects 	To know the environmental	
	aspects of different renewable	
	combustibles during the whole	
	life cycle of the system from	
	manufacturing to recycling	
 Commercial aspects 	To understand how the	
	marketing and delivery of	
	renewable combustibles can be	
	developed	
Geothermal heating and	To know the geothermal heat	Heating and Cooling
cooling (2 CU)	and benefits and challenges in	Power plants
	utilizing it.	History and
 Known applications 	To know what kind of	www.thermia.com
	applications to utilize	(Commercial)
	geothermal heat has been	
	develop.	
 Usability of geothermal 	To know, where, when and how	
systems	to use geothermal systems	
 Scalability of systems 	To understand the requirements	
	a scalability sets to planning and	
	manufacturing the systems	
 Planning and installing 	To be able to plan, install and	
geothermal systems	implement common small	
	geothermal systems	
 Environmental aspects 	To know the environmental	
	aspects of utilizing geothermal	
	heat during the whole life cycle	
	of the system from	
	manufacturing to recycling	
• Commercial aspects	To understand the issues	
	impacting to marketing and	

	imple syste	ementing the geothermal ms	
 Other application thermal pump 	tions basing to To kn bs imple them	ow other applications and menting and usage of .	Heat pump systems Articles
 Air source 	heat pump		
 Exhaust (all recovery 	ir) heat		
 Exhaust was recovery 	ater heat		
 Reuse of the cooling system 	ne heat from tems		

Special Questions in Renewable Energy Technology

As the target group of the education is immigrants and refugees, many of them coming from countries where the lack of energy in everyday life is emerging, and where the lack of infrastructure emphasizes the mixed energy sources, micro-sized energy producers and co-operation between separate stakeholders. On the other hand, mixed energy production and micro-sized energy producers are emerging phenomena also in European Union. The micro-sized electric plants like solar electric panels and wind mills, as well as systems they are using, will most probably operate in low voltage area from 12 to 48 volts to minimize both loss caused by inverters and accidents caused by higher voltage. However, there are many issues in low voltage systems that should be considered when planning and implementing the systems. Finally, the contemporary situation in nuclear power should be discussed. Although the nuclear power is not considered as renewable power, the energy technicians should have at least basic knowledge concerning the fission, fusion and their risks and opportunities. Furthermore, there has been developed small fission plants, which are said to be a solution to complement the local production of renewable energy. The environmental activists in many countries are now changing their earlier strongly negative attitudes and accepting the nuclear power as temporary solution, which helps reducing greenhouse gases during the way to completely green energy production, whatever it could be.

The	topics	that ar	e available	and their	CU-values are
-----	--------	---------	-------------	-----------	---------------

ISSUES	Goals of learning	Links to the material (Examples)	
 Mixed energy sources (1 CU) 	To realize that system may produce more than one type of energy, to know when, and how, this kind of systems would be usable and why.	<u>Depending to the</u> <u>interests</u>	
 Heat and cool (e.g. heat pumps) 	To be able to install and implement simple heath pump		
 Heat and electric (e.g. solar plants, condensing power plants) Heat and kinetic (e.g. condensing power plants) Electric and kinetic (e.g. wind mills) 	To identify different ways to produce energy in larger scale		
 Micro-sized energy producers (1 CU) 	To know the challenges in micro-size energy production	VTT Heat VTT Microgrids	
 Trading the energy (surplus or everything), connecting to networks / grids Local regulations Governmental support Pricing and taxation systems 	Local circumstances vary, to be completed by local education provider	E.g. <u>Blockchain</u>	

•	,	Co-operation (1 CU	To understand the importance	Blockchain
	С	Producers	of co-operation between	Path to success
	С	Consumers	different participants in	Collaboration is
	С	 Suppliers of equipment 	renewable energy markets.	<u>crucial</u>
	С	> Energy transfer operators		
•)	Fission and fusion (1 CU)	To have a true and fair view	Nuclear power today
	С	> Benefits (impartial and	concerning the contemporary	Fission VS fusion
		objective approach)	situation of nuclear power, and	Fusion today (example)
	С	> Risks (impartial and objective	the possibilities and risks of	
		approach)	different ways to produce and	
	С	 Small-sized fission plants 	utilize nuclear power.	
	С	 Contemporary situation of 		
		fusion plant development		
•		Storing and Reusing the CO2 (1 CU)	To understand the challenges	Reusing technologies
			of storing and reusing CO2	<u>Storing</u>
				Is <u>storing</u> safe?
•	•	Improving the energy efficiency, (4	To understand what factors	Competitive
		CU)	have an impact on energy	approach
	0	Building construction	efficiency, how to improve	Energy Efficiency in
	 Isolating 		energy efficiency and how to	buildings
	0	Recovery of waste energy	design and plan energy	How to improve
	0	Designing and planning;	effective constructions	Improving
				How to (Commercial)
$\left \right $		Moosuring and ovaluating the	To be able to measure and	Measuring
	•	energy officiency (2 CU)	ovaluate the energy efficiency	Evaluating Tools
	_	Logislation and regulations	of building	(oxamplo)
	0	Mossuring		(example)
	0	Calculations		
	0	Calculations		
				1

Management and entrepreneurship studies (Optional courses)

One goal of this education is to encourage and help persons with a business idea to start their own business instead of working as an employee. The management and entrepreneurship studies will be offered as optional studies so that every student can choose those courses best applied to his/her situation and needs. The optional courses offered could include

- Business management
- Business jurisprudence
- Contract jurisprudence
- Personnel management
- Accounting
- Tax jurisprudence
- Financial management
- Marketing and communication

etc. All the courses should be applied to local legislation and regulations.

Further material

Further material can be applied according to needs. Following links, e.g., are worth looking into:

http://veste-project.eu/results/

https://www.oph.fi/download/178167_further_qualification_for_entrepreneurs_2012.pdf

https://www.oph.fi/download/140416_vocational_qualification_in_electrical_engineering_and_automation_n_technology_2009.pdf

https://www.globalccsinstitute.com/

https://www.weforum.org/system-initiatives/shaping-the-future-of-energy

https://www.irena.org/

https://europa.eu/youreurope/business/index_en.htm

https://www.interreg-central.eu/Content.Node/4-energy-final.pdf

https://drive.google.com/file/d/1kD9kjDCFdnMG4sU8sUBib9pbItAgNzBZ/view

Also the products of earlier courses are useful:

Modifications allowed

The proportional division and content of separate courses suggested above can be changed if local conditions or needs of participants could be responded better by other solutions.

Examinations and qualifications

Examinations will be coordinated and competences will be controlled according to local regulation and locally required qualifications. It is each local actor's responsibility to take care that the admission requirements are fulfilled before the qualification application.